PLS-regression: a basic tool of chemometrics

نویسندگان

  • Svante Wold
  • Michael Sjostrom
  • Lennart Eriksson
چکیده

Ž . Ž PLS-regression PLSR is the PLS approach in its simplest, and in chemistry and technology, most used form two-block . predictive PLS . PLSR is a method for relating two data matrices, X and Y, by a linear multivariate model, but goes beyond traditional regression in that it models also the structure of X and Y. PLSR derives its usefulness from its ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. PLSR has the desirable property that the precision of the model parameters improves with the increasing number of relevant variables and observations. This article reviews PLSR as it has developed to become a standard tool in chemometrics and used in chemistry and engineering. The underlying model and its assumptions are discussed, and commonly used diagnostics are reviewed together with the interpretation of resulting parameters. Ž . Two examples are used as illustrations: First, a Quantitative Structure–Activity Relationship QSAR rQuantitative StrucŽ . ture–Property Relationship QSPR data set of peptides is used to outline how to develop, interpret and refine a PLSR model. Second, a data set from the manufacturing of recycled paper is analyzed to illustrate time series modelling of process data by means of PLSR and time-lagged X-variables. q 2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Objective Function of Partial Least Squares Regression

A simple objective function in terms of undeflated X is derived for the latent variables of PLS regression. The objective function fits into the basic framework put forward by Burnham et al. (J. Chemometrics, 10, 31-45, 1996). We show that PLS and SIMPLS differ in the constraint put on the length of the X-weight vector. It turns out that SIMPLS penalizes the length of the part of the weight vec...

متن کامل

Partial Least Square Regression PLS-Regression

PLS regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. Its goal is to predict or analyze a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal factors called latent variables which have the best predictive pow...

متن کامل

Overview and Recent Advances in Partial Least Squares

Partial Least Squares (PLS) is a wide class of methods for modeling relations between sets of observed variables by means of latent variables. It comprises of regression and classification tasks as well as dimension reduction techniques and modeling tools. The underlying assumption of all PLS methods is that the observed data is generated by a system or process which is driven by a small number...

متن کامل

Partial Least Squares (PLS) Regression

Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...

متن کامل

A Sequential Algorithm for Multiblock Orthogonal Projections to Latent Structures.

Methods of multiblock bilinear factorizations have increased in popularity in chemistry and biology as recent increases in the availability of information-rich spectroscopic platforms has made collecting multiple spectroscopic observations per sample a practicable possibility. Of the existing multiblock methods, consensus PCA (CPCA-W) and multiblock PLS (MB-PLS) have been shown to bear desirabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001